Si8901 Ring Demodulator/ Balanced Mixer

FEATURES

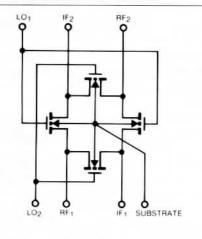
- High Third-Order Intercept Point
- <6% Device Matching Error

BENEFITS

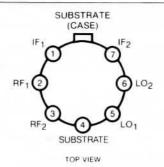
- Low Harmonic Distortion
- Wide Dynamic Range
- Reduced System Component Count

APPLICATIONS

- HF Mixer/Demodulator
- HF Modulator/Upconverter

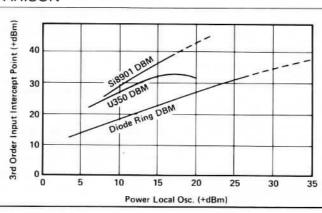

Contact factory for Application Note AN 85-2.

DESCRIPTION


The Si8901 Ring Demodulator/Balanced Mixer offers significant improvement for HF mixer applications where the third-order harmonic distortion has been a problem. When used as a commutation HF double-balanced mixer, the Si8901 provides a high-fidelity IF output with

typical conversion loss of 8 dB. Signal frequencies may be as high as 150 MHz. Available in an 8-pin TO-99 package, this device is specified over -55 to 125°C operating temperature range.

FUNCTIONAL BLOCK DIAGRAM



PIN CONFIGURATION

Order Numbers: Si8901A (TO-78) Si8901Y (SO 14) See Section 6

PERFORMANCE COMPARISON

-Si8901

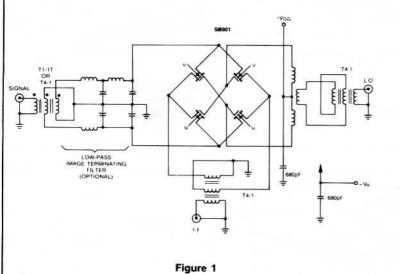
V _{DS} Drain to Source	I _D Drain Current
V _{DB} Drain to Substrate	Operating Temperature55 to 125°C
V _{SB} Source to Substrate	Storage Temperature65 to 150°C
V _{GS} Gate to Source22.5 V to 30 V	Power Dissipation (Package) 640 mW*
V _{GB} Gate to Substrate0.3 V to 30 V	
V _{GD} Gate to Drain22.5 V to 30 V	* Derate 5 mW/C above 25°C

ELECTRICAL CHARACTERISTICS¹

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$

	PARAMETER		TEST CONDITIONS	LIMITS			
			UNLESS OTHERWISE NOTED:	MIN ²	TYP3	MAX	UNIT
DYNAMIC STATIC	Drain-Source Breakdown Voltage	BVDS	V _{GS} = V _{SB} = -5 V, I _S = 10 nA	15	25		v
	Source-Drain Breakdown Voltage	BVSD	$V_{GD} = V_{DB} = -5 \text{ V, } I_{D} = 10 \text{ nA}$	15			
	Drain-Substrate Breakdown Voltage	BVDB	Source Open, V _{GB} = 0V, I _D = 10 nA	22.5			
	Source-Substrate Breakdown Voltage	BVSB	Drain Open, V _{GB} = 0V, I _D = 10 uA	22.5			
	Threshold Voltage	V _{TH}	V _{DS} = V _{GS} = V _{TH} , I _S = 1 uA; V _{SB} = 0 V	0.1	1	2.0	
	Gate Leakage Current	I _{GBS}	V _{DB} = V _{SB} = 0 V, V _{GB} = 30 V			2	uA
	Drain-Source "ON" Resistance r _{DS} (on)	r _{DS} (on)	I _D = 10 mA, V _{SB} = 0 V, V _{GS} = 5 V		50	75	Ω
			$I_D = 10 \text{ mA}, V_{SB} = 0 \text{ V}, V_{GS} = 10 \text{ V}$		30		
			I _D = 10 mA, V _{SB} = 0 V, V _{GS} = 15 V		23		
			$I_D = 10 \text{ mA}, V_{SB} = 0 \text{ V}, V_{GS} = 20 \text{ V}$		19		
	Resistance Matching	r _{DS} (on)	$I_D = 10 \text{ mA}, V_{SB} = 0 \text{ V}, V_{GS} = 5 \text{ V}$		3,	7	
	LO ₁ -LO ₂ Capacitance	Cgg	V _{DS} = 0 V, V _{BS} = -5.5 V, V _{GS} = 4 V		4.4		pF
	Conversion Loss	Lc	See Figure 1, P _{LO} = +17 dBm		8		dB
	Third Order Intercept	IMD ₃			+35		
	Maximum Operating Frequency	f _{max}			200		MHz


NOTES:

- 1. Refer to PROCESS OPTION FLOWCHART for additional information
- 2. The algebraic convention whereby the most negative value is a minimum, and the most positive value is a maximum, is used in this data sheet.
- 3. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

APPLICATION HINTS

Schematic of the basic commutation-type HF doublebalanced mixer using resonant-gate excitation. Recom-

mended reading is AN85-2 "A Commutation Double-Balanced MOSFET Mixer of High Dynamic Range."

50.00 16V 12V 8V 10.00 1

First and Third Quadrant I-E Characteristics Showing Effect of Gate Voltage Leading to Large-Signal Overload Distortion.

Figure 2

THE Si8901 AND HIGH-FREQUENCY MIXERS

A Synopsis:

Given a monolithic quad small-signal DMOS FET, our objective was to apply this product to a high-frequency (0.5 to 150 MHz) balanced mixer circuit and see what performance features would result. Since the FET has an inherent square-law transfer characteristic, low-distortion in mixing was expected; also, a high figure-of-merit was expected because the subject quad FET had both low ON-resistance and low inter-lead capacitance; finally, the required local oscillator power was predictably low because the FET is a voltage-controlled device. What is proffered is a new commutation mixer circuit which achieves mixing and frequency conversion by the switching action of a quad FET ring.

Using the Si8901 in circuitry described herein will produce a high-dynamic-range high-frequency mixer with outstanding intermodulation performance and overload characteristics. The recommended circuit is capable of two-tone 3rd-order input intercepts exceeding +36 dBm with less than 50 milliwatts of local-oscillator drive. This intercept point says that two signals of -20 dBm will have 3rd-order intermodulation products greater than -110 dB below the intermediate-frequency output signal!

The application note presents the theory and operation of commutation balanced mixers. It compares switching mixers to passive diode ring and active FET mixers; it examines frequency-selective filtering; and finally, novel/practical circuitry to achieve the required local oscillator driving voltage is presented. Since the Si8901 is uniquely suited to build a double-balanced mixer, the product data sheet and application note have been combined in this one document.